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ABSTRACT. We study the effects of negative spatial curvature on the statistics of inhomogeneities 
in open cosmological models. In particular we examine the suppression of large-separation correla- 
tions in density and gravitational potential fluctuations and the resulting suppression of large-angle 
correlations in the anisotropy of the microwave background radiation. We obtain an expression 
which gives the minimum amount of suppression of correlations for any statistical distribution 
described by a “power spectrum”. This minimum suppression requires that the correlations fall 
off exponentially above the curvature scale. To the extent that the observed correlations in the 
temperature anisotropy extend to large angular &ales, one can set a lower bound to the radius of 
curvature and hence on 00. 

1. Introduction 

In this paper we examine the effects of negative spatial curvature on the statistics of inho- 
mogeneities and in particular the microwave background radiation (MBR) anisotropy. Throughout 
this work, we shall consider only a cosmology described by a homogeneous, isotropic Friedmann- 
Robertson-Walker (FRW) spacetime with negative spatial curvature. The spatial geometry is that 
of H=, a 3-hyperboloid. We may call such an expanding spacetime “open” because the spatial 
manifold, Ha, is non-compact. 

In an open FRW spacetime the spatial sections are intrinsically curved with a fixed curvature 
radius hu,,. at all points in space at a given time, such that the spatial Ricci scalar is sR = 

6/R,zW On length scales much smaller than the radius of curvature, I << &,,,,, the space 
effectively has a flat, Euclidean geometry. On length scales 1 2 R,,,,,, the space has a hyperbolic, 
Lobachevskiian geometry. Hence, the effects of spatial curvature ought to be manifest in physical 
processes on length scales comparable to the radius of curvature. 

Neither classical tests for curvature such as number counts and the redshift-distance relation? 
nor more modern techniques such as the statistics of gravitational lenses or anisotropy of clustering 
in redshift space, have yet to provide any conclusive evidence for or against the presence of spatial 
curvature [l]. Each of these tests attempts to probe the geometry directly, or indirectly through the 
effect of spatial curvature on the expansion of the universe. Here we examine a different consequence 
of the curvature, namely how the curvature influences the correlations of the inhomogeneities. 

In particular we shall show that for any spectrum of inhomogeneities that correlations of 
the inhomogeneities must fall off exponentially for spatial separations greater than the radius of 
curvature in an open cosmology (see ref [2] f or another discussion of these effects). Such a fall-off 
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is also Possible in a flat or closed cosmology, subject to the specific behavior of the spectrum of 
fluctuations. Thus one cannot determine the curvature scale without making further assumptions 
about the spectrum of inhomogeneities [3,4,5]. N evertheless, we may set a lower bound on the 
radius of curvature through this technique. 

The plan of the paper is as follows. In 52 we discuss the relationship between correla- 
tion lengths of functions and the wavenumbers which parameterize the integral transforms of the 
functions. In 33 we show that for open cosmological models in which the inhomogeneities are 
described by a power spectrum there is necessarily, on average, a suppression of very-large-scale 
correlations in the inhomogeneity. Here “very-large” means larger than the curvature scale. It 
is shown in $4 how the suppression of large-scale power may be used to set a lower limit on the 
curvature scale from observations of MBR anisotropies. In 55 we examine a toy model of inhomo- 
geneities with very-large-scale spatial structure but small-scale angular structure in the observed 
MBR anisotropies. 

While open cosmologies have been studied by many authors the basic mathematical formulae 
used to describe functions in open cosmologies are probably unfamiliar to many readers. We neither 
wish to inundate the reader with many formulae nor to leave many of the basic mathematical results 
as references in other work. Therefore we present the necessary analytic tools in an appendix. 

2. Patch Size, Wavenumbers, and Correlation Lengths 

In this section we shall briefly discuss the relation between the correlation length of a function 
on the hyperboloid and the wavenumbers which characterize the mode decomposition. Unlike the 
flat cosmology, in an open cosmology there is a built-in spatial scale, namely the curvature scale 
&,rv. One consequence of this curvature scale is that we cannot automatically’use our Euclidean 
intuition, which should apply to lengths below &,,,, to extrapolate to lengths comparable to and 
larger than the curvature scale. 

Functions on a Euclidean space 

Consider a function in 3-dimensional Euclidean space, f(x), which consists of a positive 
“patch” of size L and which falls off rapidly outside of this patch. An example of this would be a 
top-hat function: f(x) = O(L - Ix]), or a 3-dimensional Gaussian: f(x) = exp(-]x]r/(21’)). One 
could Fourier transform such a function 

1 
f(k) = (zx,f J dJxf(x) e--ik-, 

obtain the power spectrum by integrating the unit vector fi over the unit sphere 

Pf(k) = -& Jd% lj(kfq2, 

and obtain the 2-point correlation function 

(2.2) 

dk k2 T Pf(k). (2.3) 



For either of the above functions which describe a patch of size L, we see that most of the power, 
i.e. the dominant contribution to the integral 

47r 
J 

-dkk2q(k) = 
0 I 

dJxlf(x)12, (2.4) 

is due to values of the wavenumber Ic - l/L. As well, the correlation function, E:f(d) , is roughly 
constant until d 2 L where it starts to fall-off rapidly. Thus, the Fourier-transform coefficients at 
wavenumber k - l/L may be said to characterize the patch size and correlation length. 

Functions on a hyperboloid 

Now let us consider a similar function which consists of a “patch” of size L on a 3-dimensional 
hyperboloid. A square-integrable function on a hyperboloid, such as this patch, may be decom- 
posed into scalar harmonics on the hyperboloid, using a Mehler-Fock transform [see eqs (A17-28)]. 
Certainly, these harmonics are different from the usual Fourier transform harmonics. For instance, 
the eigenvalues, -k2, of the Laplace-Beltrami operator acting on the scalar harmonic eigenfunc- 
tions have a spectrum extending only to the range (-oo, -l/&urvZ] [see eq (A17)]. If we identify k 
as a wavenumber, then there are no “very long wavelength” (eigen-)modes, i.e. with k < I/&,,.. 
As well, one can verify that eigenfunctions with eigenvalue -k2 really do vary with a typical length- 
scale given by k-‘. Hence, no eigenfunctions are smooth over a length scale much larger that the 
curvature radius. Thus if one has a function with a very large patch size, L > &.,,, one cannot 
guess, as we do in Euclidean space, that it is composed mostly of eigenmodes with k - l/L, since 
there are no such modes. Rather, the way to compose a function with a large patch size L > Kurv 
out of eigenfunctions which vary on length scales up to a,,, is to carefully add eigenfunctions with 
nearly the same patch size together but with opposite signs. With the right choice of coefficients 
one can, by delicate cancellation, construct a function with an arbitrarily large patch size. 

To illustrate this we consider two examples of functions with very large patch size and their 
Mehler-Fock transform. It is convenient and conventional to write the Mehler-Fock transform in 
terms of the variable v z ~k2&,,,2 - 1 rather than the physical wavenumber k. The range of v is 
[0, co). One should remember that Y = 0 corresponds to a finite physical wavenumber k = l/K,,, 
and not to an infinitely long wavelength. 

Decomposition of a radial step function on the hyperboloid 

Consider first a radial step function, i.e. a top-hat: 

nx, O,dl = 0(x - X0)> (2.5) 

where x is the radial coordinate measured in units of the curvature radius, 9 the polar angle, and 
4 the azimuthal angle [see eq (Al)]. S’ mce this function is spherically symmetric about the origin 
the transform only contains the (I, n) = (0,O) t erm. The Mehler-Fock transform of this function 
is 

f;m(v) = 1 TV ---;;(coshxo sinvxo - vsinhxs cos ~~s)6rs~~~. 

If the patch size, ~s&~~, is much smaller than &,,,, i.e. if x0 << 1, then 

kyo L(y) = 9 (sin q0 - vxo cos ~x0)6dm0 
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(2.6) 

(2.7) 



which is the usual transform of a top-hat in’ terms of spherical Bessel functions jr. Iii this case 
most of the power is concentrated at 1~x0 - 1 or kL - 1, just as our Euclidean intuition tells 
us. On the other hand, if the patch size is much larger than the curvature radius, i.e. x0 > 1, 
then the transform of eq (2.6) b ecomes oscillatory at Y < 1, i.e k&,,, = 1. Now our Euclidean 
intuition tells us that for xo >> 1 the dominant contribution to the transform should be due to that 
harmonic which oscillates only on very large wavelengths. This Euclidean intuition is misleading 
when applied to the large-scale properties of functions on this negatively-curved space. Examine 
the behavior of eq (2.6) for xc > 1, varying V. We see that the transform is dominated by 
contributions from a continuous range of harmonics with 0 < v 5 1. Thus, a single harmonic 
cannot identify or characterize this step function on length scales larger than the horizon radius. 
There is, however, nothing mysterious about the behavior of these Mehler-Fock transforms. The 
decomposition of this square integrable function which is constant on length scales larger than the 
curvature radius requires an assembly of many harmonics. 

Decomposition of a Gaussian function on the hyperboloid 

As a second illustration of the properties of functions and transforms on this negatively 
curved space, consider a Gaussian function centered at the origin: 

f(x,@,d) =exp --fj$ 
( > 0 

The MehIer-Fock transform is 

sm(v) = 26x0 sin vxi exp (-i(v’ - 1)x:) ~r&o. 

This function X,,,(V) is oscillatory in v with angular frequency -&. If xs < 1 then the amplitude 
of the transform is exponentially damped as exp(-v’xi/2) before the first oscillation in Y. In 
this case the transform closely approximates the flat-space Fourier transform. If the width of the 
Gaussian is much larger than the curvature radius, xc > 1, then the function oscillates many times 
before it is exponentially damped. 

The power spectrum of the Gaussian is simply related to square of the Mehler-Fock transform 
of eq (2.9) via eq (A30). Note that the power spectrum of the Gaussian will also be oscillatory. One 
may determine which wavenumber contributes most of the power by considering the cumulative 
power as a function of the physical wavenumber, k, i.e. 

I 
Y 

P,‘(v) G 4n do c2Pf( Y) 
0 

which for the Gaussian is given by 

q+, = nJ;;xo ( eXierfxOv - i (efi(v + i)xo + erf(y - i)xs) 
> 

We plot the shape of this function versus k for various values of x0 in figure 1. We see that for r 
Gaussian with width much smaller than R, UIy, i.e. xs < 1, that most of the power is concentrated 
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Figure 1: For a 3-d Gaussian function in hyperbolic space these curves gives the cumulative power in modes 
with wavenumbers less than k as a function of k. From bottom to top, the displayed curves have valuea of 
the Gaussian width given by ~0 = 0.1, 0.3, 0.5, 1, 2, 3, 10. The Gaussians have been normalized to give unit 
total power. Observe that if the Gaussian width is much less than the curvature radius, i.e. ~0 < 1, that 
most of the power comes from k - l/(x,,& .,“), while if ~0 > 1 the power comes predominantly from k very 
close to 1 /Ku.. 

at k N l/(~s&~~~), i.e. wavenumbers corresponding to the width of the Gaussian. However for 
Gaussians with width much greater than &,,, the power becomes concentrated at k’s very close 
to the minimum value: k = l/K,,,, which is a wavenumber much greater than l/(xs&,,,). As 
we shall see this smaller length scale is also reflected in the correlation function. 

The notion that the Gaussian may be nearly constant on distances larger than the curvature 
radius does not necessarily mean that the correlations in the Gaussian extend, on average, over 
distances larger than the curvature scale. To see this let us first calculate the correlation function 
of this Gaussian as defined in (A29). We obtain 

Zf(d) = t?L: [lerf& - erfd izi _ erfd ::“I (2.12) 

which is illustrated in figure 2. If xs < 1 then this correlation function falls off for d 2 x0, while 
for xs 2 1 the correlation function falls off for d 2 1 no matter how large is x0. 

How can a function have a correlation length much smaller than the size of the region ovs 
which the function extends? To understand this one should recall that w -f gives the volume- 

weighted product of f’s at alI pairs of points separated by a given distance. If the function has 
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Figure 2: The ratio of the correlation function of a Gaussian at spatial separation d to the zero-lag COT- 
relation function is displayed as a function of d. From left to right, the displayed curves have values of 
~0 = 0.2, 0.5, 1, 2, 5, 10 for the width of the Gaussian. Observe that even for a Gaussian with width much 
greater than the curvature radius, i.e. ~0 > 1, that the correlation function drops off rapidly for d > 1. Thus, 
the correlation length for such a Gaussian is never much greater than the radius of curvature no matter how 
“wide” the Gaussian may be. 

support on length scales larger than the radius of curvature, xs >> 1, then this weighted product 
is dominated by contributions from the outer edges of the function where f falls off rapidly, i.e. it 
is dominated by x - ~0. The rapid variation on the outer edges overwhelms the contribution of 
x < xs due to the exponentially increasing volume at large radii in a hyperbolic space. Thus the 
correlation length of the 2-point function reflects the rapid variation at the edges of the function 
f and not the slower variation in the center. 

3. Inequalities for Correlation Functions 

In this section we shall quantify the claim that large scale correlations are suppressed in an 
open universe. Consider two different moments of the power spectrum of some scalar function + 

Mi = 4r Jrn dvv2K;(v)?‘,(v) (3.1) 
0 

for i = 1,2. Here P*(V) is defined by eq (A30), and K,(Y) is some arbitrary function of Y. We 
know that P*(V) 2 0, so that we have the inequalities 

!MJ < max lK22(~)I 

MI - Y K1 (vi 
if 

KI(~) > 0 (Case A) (3.2) 
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or 

min- < 5 < max* WY) 
* KI(v) - A41 - y Kl(v) 

if Ks(~),Kr(v) > 0 (Case B). (3.3) 

Now, any sort of variance or 2-p&t function is a moment of the power spectrum of the form 
of eq (3.1). From eq (A29) we see that the weighting of the power spectrum for the S*(d) is 
sin(vd)/(Ysinh d). For d = 0 this is just unity, which is positive definite. Thus the ratio of any 
other moment of the power spectrum to E:,(O) must obey the Case A inequality. For example the 
ratio of the 2-point correlation at separation d to that at zero lag must obey 

1%. (41 
E*(O) - Y Ysinhd = & 

< max I sin vdl 
(3.4) 

where the maximal ratio of the weighting function occurs at v = 0. We see that the correlation 
function must fall off faster than sinh d/d which itself falls off like exp( -d) for d 2 1. 

This quantifies the claim that for any square-integrable function, the correlation length 
cannot greatly exceed the curvature radius. For non-square-integrable functions the correlation 
function = ,,(d) is not defined so one must come up with a different definition of the correlation 
function in order to obtain the correlation length. 

The functions which describe inhomogeneities in an open cosmology are typically not square- 
integrable. Instead they are drawn from statistically homogeneous and isotropic distributions. The 
expectation of bilinear moments of these functions is given by the power spectrum of eq (A32). 
Thus, the inequality of eq (3.4) appli es equally well to the case of homogeneous random noise in 
an open universe, i.e. with Z, replaced by E, In the case of cosmological inhomogeneities the 
correlation function of scalar functions must fall off exponentially beyond the curvature scale. This 
can be compared to flat-space where the relevant inequality is l&(d)1 5 t,(O) which is trivially 
satisfied for any distribution. This inequality does not imply that there cannot be large regions, 
much bigger than the curvature radius, in which a function is nearly constant. Rather it just says 
that on average - when averaging over many realizations from a homogeneous, isotropic distribution 
- the field may vary significantly over distances greater than the curvature radius. 

The bound on the ratio of the correlation functions, eq (3.4), indicates that there is no way of 
smoothing functions in a statistically homogeneous way in order to increase the correlation length 
beyond the curvature scale. For example, one way of smoothing a function in a homogeneous and 
isotropic way is to convolve the function with a spherically symmetric “smoothing kernel”. As 
indicated by eq (A35), convolution just multiplies the power spectrum by a factor and this factor 
drops out in the ratios which give the inequalities of eqs (3.2-3). Therefore eq (3.4) applies to the 
smoothed function as well as the unsmoothed function. 

The reason that smoothing is unable to increase the correlation length is fairly easy to 
understand. The smoothing kernel must be square integrable in order for the smoothed function 
to retain a finite variance: {,*,(O) < 03. As noted above square-integrability means that the 
smoothing kernel, IV, must fall off exponentiaJy at some finite distance from its “center”. Due to 
the exponential increase in volume at large distances, it is this rapidly varying part of the ,kern.el 
which will contribute most to the variation of the smoothed function. Thus the smoothing kernel 
cannot effectively smooth things on scales greater than the curvature radius. 
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4. Limits on R 

We have shown that the correlation function of scalar quantities which describe the inho- 
mogeneities in an open universe must fall off rapidly with large spatial separation. Can we use this 
property of the correlation function to set limits on the curvature radius of our own universe and 
thus place limits on Rc? Recall that we have only placed upper limits on the correlation function 
and that this upper limit becomes smaller as one decreases the radius of curvature, and therefore 
as. One can therefore only hope to place a lower limit on Rs from the inequality we have derived. 
If the correlation function starts to fall off exponentially on some scale, it could be that one has 
reached the curvature radius, or it could be for some other reason. However if we do not see an 
exponential fall-off then we have not reached the curvature scale. 

We are proposing a model independent upper limit which only depends on the assumption of 
isotropy and homogeneity. If one had further knowledge of the origin of the inhomogeneities which, 
say, fixed the power spectrum as a function of as then one could hope to measure 0s directly from 
the correlation function. Of course the predicted correlation in any such model must obey the 
inequalities derived above. So far in this paper we have not assumed any model. 

One should also recall that the correlation functions we are dealing with are expectation 
values under a distribution. In most cases, i.e. for ergodic processes, they should also give the 
correlation function for averages over the entire space. They do not give an indication of the distri- 
bution~ of any quantity in a finite volume, i.e. how probable it is to obtain a set of measurements. 
This is determined by the statistics of the random process generating the inhomogeneity. Until 
one makes assumptions about this distribution one cannot set any rigorous statistical limit on a,. 
Nevertheless if flc is sufficiently small and our observations are of a sufficiently large volume we 
may hope to have very good statistics. This is because, as we have demonstrated, the correla- 
tion length is limited to the curvature radius and under a large class of statistical distributions 
this would mean that roughly each volume of curvature radius is nearly statistically independent. 
Thus in our observational volume we would have a large number of independent samples of the 
distribution and thus a representative sample of our universe. 

The obvious application of the limit on the correlation function is to the distribution of 
galaxies. There are, however, at least three reasons why this is not likely to be interesting. First, 
as we see from equation (A14) the actual size of the curvature radius is quite large, corresponding 
to redshifts greater than 1.7 and distances larger than 3000h-‘Mpc. This is a distance much larger 
than it is practical to survey in the foreseeable future, as galaxies at this distance are very faint. 
Furthermore one would have to understand the evolution of the luminosity function of galaxies 
before one would be able to disentangle the evolution from the inhomogeneity. Second, it is well 
known that the galaxy correlation function decreases rapidly with separation as far as is measured, 
up to about lOOh-‘Mpc which is clearly less than the curvature radius. While it is true that a 
simple extrapolation of this fall-off would not match the exponential fall-off required in an open 
universe, one would still have to measure the correlations where they were extremely small in 
order to put an interesting limit on Rc. To do this one would have to keep systematic errors to an 
extremely low level. One might also think that such a measurement would be nearly impossible 
because of “shot noise”, the statistical fluctuations caused by the finite number of galaxies. This 
need not be the case since the shot noise, which after all is also statistically homogeneous, would 
also be cutoff exponentially at the curvature radius. This decrease in shot noise is a result of the 
extremely large number of pairs of galaxies at large separations due to the exponentially growing 



volume element in a hyperbolic space. This points to the third problem with measuring 0s with 
galaxy correlations. Namely that if one were able to measure the galaxy distribution deep enough 
to notice the fall-off in correlations, one would almost certainly notice the exponentially growing 
volume element just by counting the number of galaxies. This classical number counting technique 
is almost certainly a better probe of ‘Re than the correlation function. 

To get to large enough distances one might examine the correlations in the locations of 
QSO’s or their absorption systems. These objects are much easier to observe at large distances than 
galaxies, but they also suffer from having an unknown evolution of their numbers and luminosity 
with redshift. The number density of observed &SO’s is muchless than that of galaxies so it is more 
difficult to measure correlations on any scale, requiring a greater sample volume for a significant 
result. The number of Ly-a absorption systems is quite large, especially at large redshifts, but 
one is limited to seeing these systems only along the line-of-sight to QSO’s. In neither case 
is the correlation function at separations of 2 3000K’M pc likely to be obtained in the near 
future. A simple extrapolation of correlations on smaller scales would suggest that the amplitude 
of inhomogeneity on these scales would be very small and difficult to measure. 

An easier way to get to very large separations is to look at the MBR with which we can see 
back to the last-scattering epoch at a redshift 21, - 10 - 1000. Recently significant correlations 
in MBR temperature anisotropies have been measured using the COBE satellite [6]. Such large 
angle measurements are already sampling scales much larger than the curvature radius even for 
moderately small Rc. The suppression of spatial correlations at large separations should have 
the greatest effect on these large ,angular-scale MBR measurements such as COBE. We shall now 
proceed to study how angular correlations of the MBR temperature anisotropies are effected by 
curvature. Placing the observer at the origin (x = 0) and assuming small scalar deviations from 
homogeneity, the MBR anisotropy on large angular scales is given by 

+%wd = ~S,(?,b,-lll,Ie,~,~,)+m(?ob.-~.,e,~)+2Jd?~(rl~b~-~,e,~,tj)-~I(~~b~-~r,e,0) 

(4.1) 
where 6, gives the fractional change in the photon density and @ gives the fluctuation in the 
Newtonian potential, & is its derivative with respect to 7, and vx is the radially directed velocity 
of the photons. The quantity ~,a, -q, gives the conformal distance to the surface of last scattering, 
and hence the x coordinate of the points on the surface of last scattering. 

Let us now consider the relative importance of the terms contributing to the MBR anisotropy 
in equation (4.1). In standard flat cosmology the Newtonian potential is constant in time so the 3rd, 
“integrated Sachs-Wolfe”, term in equation (4.1) . is very small. We also ignore the 4th, “Doppler”, 
term in equation (4.1) which is not likely to be important on very large angular scales. It is the Ist, 
“density”, and 2nd, “potential” terms which are most important on large scales. Whichever term 
dominates depends on the nature of the perturbations. For non-adiabatic fluctuations, deviations 
in the photon-to-baryon ratio will usually lead to photon density fluctuations which dominate 
the potential fluctuations. For adiabatic fluctuations the density fluctuations nearly cancel the 
potential fluctuations leading to a net anisotropy of only ia. However in an open universe the 
gravitational potential will decay and the integrated Sachs-Wolfe effect will become important. Be- 
low we show that if Rs is small, the large-scale correlations in the density and potential anisotropies 
are strongly suppressed, while the integrated Sachs-Wolfe anisotropies are less strongly suppressed_ 
For this reason we can expect that for small Rs that the large-scale anisotropies will be dominated 
by the integrated Sachs-Wolfe effect. 
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We wilI not consider tensor,and vector fields in this work, considering only the cosmological 
perturbations described by scalar quantities. Whereas it is certain that scalar quantities such 
as density and gravitational potential fluctuations play a significant role in the observed MBR 
anisotropy, the relative importance of tensor and vector fields is empirically rather uncertain, and 
can vary greatly between different cosmological models of structure formation. We expect that 
the techniques used in this paper may be applied to vector and tensor modes and that one would 
obtain similar limits on Ro from such calculations. 

One might also expect the suppression of large-angle correlations of the polarization ,of the 
MBR. Polarization provides certain advantages over temperature anisotropies in obtaining limits 
on RO. Firstly because the MBR polarization, generated by electron-photon scattering, is confined 
to the surface of last scattering, while MBR anisotropy may be generated at smaller redshifts via 
the integrated Sachs-Wolfe effect. We will see below that the integrated Sachs-Wolfe anisotropies 
yield much less stringent limits on S& than those generated on the surface of last scattering. 
Secondly there is no need to subtract off the monopole or dipole components of polarization, they 
are zero. Such subtractions in the case of anisotropies lead to “artificial” correlations at large 
angular separations. Of course the main disadvantage of MBR polarization is that it has not 
yet been detected. Furthermore it is likely to be at a much smaller amplitude than temperature 
anisotropies, and thus more difficult to measure accurately. We will not consider MBR polarization 
further in this paper. 

Anisotropies from the Surface of Last Scattering 

Let us first consider the MBR anisotropies generated at the surface-of-last-scattering, i.e. 
by ignoring the integrated Sachs-Wolfe contribution. Thus we consider the density and potential 
contributions to the anisotropy of equation (4.1). The 2-point angular correlatibn function of this 
component of the anisotropy can be easily written in terms of, tis++, the spatial 2-point correlation 

. 
function of the scalar field iS + G or its power spectrum, Pi‘++, i.e. 

cl*($) = $++ (d(%bs - V*,7),b, - q,,$)) = 4n 
sl*h4rlobs - ?lar%bs - m,1/)) 

(4:2) 
where $ is the angular separation and d&1, ~2, $) defined in equation (A3) gives the comoving 
distance between the two points on the surface of last scattering an angle 1(1 apart. As computed 
in the previous section, the inequality of equation (3.4) when applied to the intrinsic anisotropy 
gives 

IG(+t)l d(‘?obs - 9h> V,b. - VI,, $) 

G(O) ’ si*h d(%b, - 9h 710bs - a, 111) 

Using equation (A13) to calculate 7)obs -q, as a function of R. we have plotted the upper limit of 
equation (4.3) in figure 3 for various values of Ro. We see that the required fall-off in the correlation 
function is very striking even for moderately small !&. 

One cannot compare the curves of figure 3 directly to C(V,~) of the MBR anisotropy observed 
by COBE primarily because MBR anisotropy experiments do not measure the intrinsic anisotropy 
on the surface of last scattering but rather the sum of this with many other effects. Furthermore 
MBR anisotropy experiments such as COBE do not measure the 2-point function of the anisotropy 
on the sky. Instead the anisotropy is convolved with the beam pattern of the experiment. The 
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Figure 3: For anisotropies produced on the surface-of-last-scattering, this curve gives the upper bound 
on the ratio of the absolute value of the correlation function at angular separation $ to the zero-lag COT- 
relation, lls a function of + and for various values of no. From top to bottom the curves arc for Ra = 
1,0.75,0.5,0.25,0.1,0.01. The redshift of last scattering used in these figures is II, = 1000. Note that the 
required fall-off in the correlation function is very striking even for moderately small fl,,. 

beam patterns are not sensitive at all to the monopole component of the anisotropy pattern and the 
dipole component of the anisotropy pattern is explicitly subtracted. We have seen above that the 
limit of equation (3.4) is equally valid before and after 3-dimensional convolution in a hyperbolic 
space. However convolutions on the sky, which are intrinsically anisotropic, will invalidate this 
formula. Nevertheless we can use the inequalities of equation (3.2-3) to come up with alternative 
inequalities which apply to the convolved anisotropy with monopole and dipole subtraction, 

Effects of Beam Smearing 

Here we demonstrate the effects of Gaussian convolution in an attempt to address the prob- 
lem of fluctuations on the surface of last scattering more realistically. We convolve the anisotropy 
pattern on the sky with a Gaussian window function of the form 

f(4; u) = 4Ty;s~L 
d 

(4.4) 

where the width of the Gaussian may also written in terms of its FWHM, BFwHM, given by 

o=/F. 
(4.5) 
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Figure 4: The upper and lower bounds on the logarithm of the ratio of the zero-lag correlation function 
smoothed by a Gaussian of widths 7 and 90 degrees, as a function of Ro is displayed. For comparison, the 
central value of ratio obtained from the COBE 2-year data is displayed has a horizontal line..If the anisotropies 
were completely generated on the surface of last-scattering and there were no sampling or instrumental errors 
on thii COBE result then one would conclude that Ro 2 0.05. 

Applying this smoothing function to the anisotropy pattern, we find the smoothed correlation 
function is 

Cb(+;u) = A ~d+~,(o)l2 (o’sinh$)-s gs y tnl(~~b*--th,)~~(~)l’P~(~0~11). (4.6) 

Here, i,(z) = i’j,(ir), is a modified spherical Bessel function and PJ(z) a Legendre polynomial. 
Due to the simple form of the Gaussian smoothing function, we may easily subtract the contribu- 
tions of any multipole moment of the anisotropy pattern by eliminating that term from the sum 
over J. We shall adopt the notation C,,(l/t;c), to indicate that the sum over J begins with the 
.I = I term. 

Consider the zero-lag correlation function: 

CI,(~;O)~ = ~Jd~i&S(~)/Z (rssinh -$)-se yln,J(nOb, _ r7,,);J($)ls, (4.7) 
J=I 

Comparing equation (3.1) with (4.7), we see that the term in the above equation which correspon& 
to K(Y, z) is positive for any smoothing width U. Therefore, as in equation (3.3), we may place an 
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upper and lower bound on the ratio of two variances with different smoothing widths. In particular 

(4.6) 

where the ratio, ~(u~,LTz, v),, is given by 

+(‘T1, gz, “)I = 

CT; sinh -$ 

u: sinh -$ 1 * CE’=l(2J + lNc!(%b. - ?I.)iJ(*)I' 
CT&J + l)lC(%b. - 9l.) iJ($)12 (4.9) 

The minimum and ma.ximum values of r(g 1, ~2, v)~ may be easily computed numerically. 

In figure 4 we present the upper and lower bounds on the ratio of MBR variance with 7” 
and 90” smoothing, having subtracted the monopole and dipole moments. We have computed the 

’ same ratio Cl,(O; ~J(~~))~/CI~(O; u(90”)) f 2 ram the 2-year results of the COBE DMR experiment 
[6]. Comparing the observed results with predicted bounds, we see that n,,, the present-day 
cosmological density parameter, is only weakly restricted. 

Adiabatic Fluctuations and the MBR 

The above models of anisotropy were not completely realistic since the integrated Sachs- 
Wolfe effect was ignored. The relative importance of the integrated Sachs-Wolfe effect depends 
somewhat on the nature of the perturbations. Here we shall consider adiabatic fluctuations in- 
cluding the the density, potential, and integrated Sachs-Wolfe contributions to the anisotropies. 
Following ref [4] and assuming an adiabatic growing mode in a dust-dominated open universe we 
find that the MBR anisotropy is given by 

+‘, 4) = +‘(vobs, e,d) + 2 /‘Oh’ d7] ‘b(%br - v,e, 4) F’(v) 0 
where the time evolution of the potential is given by the function F (see equation (A16)). The 
angular correlation function may thus be written as 

C.d(t/r) = &(+,b&b.,$)) + ; r d?F’(~)~*(d(‘lobsrl?ob. -‘I>+)) 

Here the kernel is 

‘)c.b. 
f4 I 

lobs 
dv1 F’(Q 1 

0 J dvz F’(9& (d(%bs - VI > ‘7obs - rlz, +)) 
0 

(4.11) 

Cad($) = 4n 
I 

-d~~%(+b(v$). (4.12) 
0 

Kad(v,+) =L Si~Yd(?obsrTobs,~) 

9 ” slnh d(rl,bs, rlobs, +) 

d9Ft(9) Si=‘vd(9obsr9obs - 9>+) 

IJ sinh d(9ob.r ‘lobs - v>$) 
?Ob. 

dvl F’(91) dvz F’(9z ) 
Sin Yd(%bs - 91,9obr - 72, $) 

” sinh d(%b. - 91, ?ob. - 92, +) 
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Figure 5: As in figure 3 except that this bound is for purely adiabatic fluctuations and the curves, from top 
to bottom, are for Ro decrezuing from 0.1 to 0.01 in units of 0.01. Observe that the required fall-off in the 
correlation function is less striking than in figure 3 even for small values of Ro. 

which at zero lag is 

,d(Y,o)=;+;/ 
‘).b. 

d9 ~‘(9) usi?n~9 + 4 J- d9t ~‘(9~) /s-s* d9s ~7~s) sin v(9z - ‘pi) 
0 0 0 Y sinh(9s - 9i) 

To find the maximum allowed values of C&(?j)/C*d(O) 
(4.i4) 

we should maximize the ratio of the in- 
tegrands K,d(v, $)/Kad(v, 0) with respect to Y. This has been done numerically and the results 
are displayed in figure 5 for Rc in the range [O.Ol,O.l]. Much smaller values of Rs are required 
to produce the same suppressions exhibited in figure 3, and therefore the limits on nc for adia- 
batic perturbations will be much less stringent than found in the case where the anisotropies are 
generated solely on the surface of last scattering. 

The reason that the bound on Rs using Cad(‘$)/Cd(0) is weaker than the bound obtained 
using Ct.($)/Ct,(O) is not hard to understand. All of the contributions to Cl,($) are at the 
relatively large comoving distance 9&,, - 9n, which for even moderately low values of Rs is much 
larger than a curvature radius away. Unless the angular separation, 4, is very small two points on 
the sky will be several curvature radii away from each other. In this case d 2 1 so that correlations 
will be suppressed expolnentially. However for the integrated Sachs-Wolfe effect the anisotropies 
are generated at much closer distances to the observer. In fact one needs Rs 5 0.1 before most 
of the integrated Sachs-Wolfe anisotropy is generated at more than a curvature radii away. Thus 
for ,a given angular separation, $J, the anisotropies along different lines of sight are generated at 
relatively small spatial separations and the d/ sinh d suppression of spatial correlations is smaller. 
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Thus for adiabatic fluctuations the suppression of correlations at a given angular scale is reduced 
because one is sampling a much smaller spatial separation than for anisotropies generated on the 
surface-of-last-scattering. 

One should also notice that in all cases the upper bound on the angular correlation function 
stops decreasing rapidly at some moderate angle. This can be understood in terms of the the 
peculiar geometrical property of hyperbolic spaces. Namely that the spatial separation of two 
points an angle 4 apart as seen from an observer will have only a weak dependence on the angle if 
the distance from the observer is much larger than &,,, (see equation (A4)). Thus the d/,sinhd 
suppression of spatial correlations saturates at some moderate angular scale and does not cause 
much further suppression at larger angular separations. 

5~. Anisotropies Without Power Spectra or Square-Integrable Functions 

So far we have considered global perturbations which are described by a power spectrum or 
local perturbations described by square-integrable functions. We have shown that for such pertur- 
bations, the correlations necessarily fall off at the curvature radius. For homogeneous Gaussian 
random noise in terms of the usual basis functions, this behavior leads to functions with support 
on length scales which are never much bigger than the curvature radius. It is certainly feasible 
to construct functions with a patch size much larger than the curvature radius, although these 
functions would not be very likely to arise from Gaussian random noise. As long as such functions 
are square-integrable the correlation function will still fall off rapidly at the curvature radius. This 
is due to the fact that the “edges” of the regions of positive or negative support, which must vary 
rapidly in order to insure that the function is square-integrable, dominate the average. Thus, we 
are lead to the question of whether there exist non-square-integrable functions which have corre- 
lation lengths much larger than the curvature radius and whether these are rel&ant to cosmology 

PI. 
In this section, we shall examine two non-square-integrable functions with a correlation 

length which is much larger than the curvature radius. We shall consider two examples of such 
a function, and show that if these functions represent MBR temperature as emitted from the 
surface-of-last-scattering, that the resultant anisotropy is still suppressed on large angular scales if 
the surface-of-last-scattering is much further from the observer than the curvature radius. As we 
shall see the amount of suppression need not be as large as we have found so far. 

A Step Function Along the Central Plane 

Consider a function which takes one value in one half of the space and the opposite value in 
the other half. In particular consider the function 

T(x, 4 4) = w( i - 8) (5.1) 

This clearly splits the space H3 in half since there is a reflection symmetry about 0 = :. One 
might argue that this function is just the limiting form of a very large top-hat function centered 
at infinity, which is square-integrable, and therefore should also have rapidly falling correlations 
on average. For any pair of points with separation T, however, there are infinitely more pairs & 
which both points lie to one side of the plane than pairs which straddle the plane. Therefore, 
one would also sensibly argue that the 2-point correlation function is really just +l, independent 
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of separation. (A simpler example of such a function is just a constant function, whose 2-point 
correlation function is independent of separation. This clearly violates the limits which apply to 
functions described by a power spectrum. We have chosen not to consider such a function, since 
it involves no inhomogeneity.) 

We shall consider the scenario in which equation (5.1), through some process, determines the 
temperature of photons as they are emitted at the time of last-scattering. That is, the temperature 
of the photons observed on the celestial sphere will take one of two values, +l for those photons 
emitted at points with 0 < : and -1 for the rest. The boundary between these two temperatures 
is given by the intersection of the sphere of radius n&. centered on the observer and the plane 
B = ;. An observer located within a distance n&s of the plane will see a disk-like temperature 
anisotropy in the shape of a circle while an observer located further than a distance n,bS of the 
plane will see no temperature inhomogeneity on the sky. Now we will determine the distribution 
of the sizes of disks as seen by observers. 

We would like to determine the measure for the distribution of disk sizes as seen by observers 
along the plane. Let us begin by defining the distance from an observer to the central plane, D,, to 
be the shortest distance connecting the observer to any point on the central plane. For an observer 
located at coordinates (x, 6’,4), 

D, = cash -1(Jl+sinhzxco528) 

gives the distance to the central plane, 

(5.2) 

The disk size is just a function of the distance of the observer from the central plane, D,. 
Therefore it suffices to determine the distribution of D,. We would like to determine the volume- 
weighted average of D,. Unfortunately this is not completely well defined since the volume of 
points with D, in some interval is infinite. To better define how to weight the different distances 
one can make use of the fact that there is an isometry corresponding to translations along the 
plane. Combining these translations with reflections about the central plane we may find that all 
points a given distance D, from the central plane are isometric. By requiring that the weighting 
scheme have the same symmetries unambiguously determines the distribution of D,. To determine 
this distribution, consider the translations in the %” and “y” directions, generated by the two 
Killing vectors which map the central plane into itself (see equation AlO) 

<I =(cos 4 sin 0, sinh x cash x cos 0 cos 4, - sinh x cash x sine sin 4) 

e; =(sin# sine, sinhx coshx cos 0 sin4,sinhx coshx sin0 cos 4) (5.3) 

The proper invariant weight, ~(0~) g’ IS rven by the requirement that 

tEt;DDc,~l = w(Dc)cij,t (5.4) 

where [;jIs] indicates antisymmetrization and eijk is the completely anti-symmetric symbol, such 
that erss = fi. This is equivalent to requiring the volume swept out by an infinitesimal translation 
in the two directions and by an infinitesimal change in D, satisfy 

G(Dc) (x 
6V 

6X,6X,6Dc’ (5.5) 
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Figure 6: In r. universe where half of spacetime is one temperature and half another, this curve gives the 
probability of observing a hot or cold circular disc on the sky of angular radius Bd or smaller. From bottom 
to top the curve.s correspond to R. = 0.99, 0.5, 0.2, 0.1, 0.05, 0.02 in a dust dominated universe, or a horizon 
size q,,b, = 0.20, 1.8, 2.9, 3.6, 4.4, 5.3 times the curvature radius. Note that if Ra < 1 most observers who 
observe hot/cold spots will observe spots with very small angular size. 

Along the 8 = 0 axis, we find that ~(0~) = i cash’ D,. Interpreting this weight as a probability 

distribution we find 
p(Dc) dD, oc cash’ D, dD,. (5.6) 

This measure is not normalisable, but since we are only interested in the range of values D, < 911,bsr 
we can still obtain sensible results. The cumulative probability that D, is less than some value is 

P,(Dc) cx 20, + sinh 20,. (5.7) 

For an observer a distance D, away from the plane the angular radius ed subtended by the disk of 
different temperature is given by 

ed = cash-’ (tanh D, coth9&). (5.8) 

So we find that the cumulative probability that & is larger than some value is 

P>(Bd) 0: 2tanh-’ (cos8 tanh9,bs) + sinh2tanhhr (cos8 tanh90br), 

and the distribution function is 

(5.9) 

ded) = 
dp > cod) 4 Sin ed tanh 9&r 

de 
d IX %br + sinh %ob, (1 - COG 6$ tanh’ 9.4s 

(5.10) 

Here we have chosen the normalization so that the integral from 0 to z is unity. If 9.,t,. > 1 then 
this distribution is strongly peaked near 0 -+ 0, i.e. very small disk sizes. 
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In figure 6, we have plotted the probability of observing a patch of angular size Bd, for 

-J&es of rl,bs = f%urv, &urv, 2&,,,. The peak in the distribution shifts to small angular patch 

sizes with increasing ?&,b,, according to the formula & = min[arcsin( l/( fisinh q&.)), x/2]. 
For a dust-dominated expansion, relating QbS to the surface of last scattering at a redshift of 
21, = 1000, the three curves in figure 6 correspond to values of the cosmological density parameter 
Rs = 0.9,0.8,0.4 respectively. Thus, we find that for a cosmological model in which temperature 
anisotropy is determined by the non-integrable function with correlation length longer than the 
radius of curvature, given by eq (5.1), then the spatial curvature &lserves to suppress the angular 
size of disks of temperature inhomogeneities on the celestial sphere. As well, in such a toy &odel, 
observation of a large disk of temperature inhomogeneity on the celestial sphere may be translated 
into a lower bound on 00, the cosmological density parameter. 

A Radial Gradient * 

Another class of functions one might consider are those which are spherically symmetric 
about the origin, i.e. 

T(X, 4 4 = F(X). (5.11) 

As above we shall suppose that T(x,8,4), through some process, determines the temperature 
of photons as they are emitted at the time of last-scattering. Clearly all observers will see an 
axisymmetric temperature pattern with the axis of symmetry being the direction from the observer 
to the center of symmetry. If we place the observer a distance &bS from the center of symmetry 
and draw a sphere of radius q&s centered about the observer, one finds that the distance, R, from 
the center of symmetry to a point on this sphere is given by (see eq (A3)) 

cash R(a) = cash &bS cash T]&. - sinh Robs sinh tl,ba cos 01, (5.12) 

where Q is the angle on the observers sky between the direction to this point on the sphere and 
the direction to the center of symmetry. All distances are measured in units of &,,,. Here q,b, 
approximates the distance to the surface-of-last-scattering so the temperature pattern is given by 

AT 
-yb) = W(a)), 

If T is not square-integrable then it is difficult to define an average over observers in order to 
conclude whether the anisotropies more often come from large or small angular scales. However 
any sensible average would give much weight to observers very far from the center, and one can 
show that for observers sufficiently far from the center the anisotropy pattern becomes independent 
of this distance. This is illustrated by the relationship 

R(a) - %br z ln jcosh q,bS - sinh QbS cos ~11 &b. > 1, %,br, (5.14) 

One would think that to makelarge angle anisotropies one should take F(R) to be slowly varying. If 
we take F(R) to be sufficiently slowly varying that a 1st order Taylor series is a good approximation 
in the inter& R E [%br - fl,br, &bs f T],bs], then 

= F’(%ba) 
coSh?obr 

h bSh%bs - Sinhqobs cos (11 + 1 - q,br 
> Slnhvoba 

(5.15) 
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Figure 7: Far e. universe with e. spatial temperature distribution which is spherically symmetric and which 
has s large spatial coherence we plot the shape of the temperature pattern which would be observed far 
from the center of symmetry. The temperature depends only on ~2, the angle from the direction toward the 
center of symmetry, and has been scaled so that the temperatures go from 0 to 1. From top to bottom 
the curves correspond to R. = 0.99, 0.5, 0.2, 0.1, 0.05, 0.02 in a dust dominated universe, or e horizon size 
n.,b, = 0.20, 1.6, 2.9, 3.6, 4.4, 5.3 times the curvature radius. Note that as Cl decreases the pattern becomes 
a smaller and smaller spot in the direction toward the center of symmetry. 

Here we have explicitly subtracted the mean temperature averaged over the sky since this con- 

tributes isotropy not anisotropy. In figure 7 we plot this temperature pattern for various values 

of r&&s. Again we find that as we increase TI,~= past the curvature radius that the temperature 
anisotropy becomes more and more concentrated on smaller angular scales. 

According to eq (4.3) and figure 3 all square-integrable functions will have a correlation 
function that will approach a &function at zero lag in the limit v&p > 1. We will now show that 
if F is not square-integrable then this limiting form may be evaded. In the limit that ll,b. becomes 
very large, but still much smaller than the coherence length of F, we obtain the limiting form of 
eq (5.15) 

+, -F =F’(&,br) (inI1-~ol+l) %br 2 71,b. B 1. (5.16) 

This exhibits a divergent hot or cold spot at a = 0, but note that the spot is only logarithmically 
divergent. If 0 < f& < 1 and F(&,,) was some power law at large &b, then the observers at 
large distance from the origin would see a pattern like that described by eq (5.16). Note that sub 
a-power law would ensure that F was not square-integrable and thus might evade the limits set in 
$4. Since essentially all the volume is at large distance one could reasonably claim that the shape 
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of the volume averaged angular correlation function for the anisotropy is just given by the shape 
of the angular correlation function of the pattern described by eq (5.16). Since the logarithm is an 
integrable singularity it is clear that C&(6; 0) i is finite at 0 = 0 and most other values of~0. Thus if 
F is asymptotically a power law then the correlation function does not obey the limit of eq (4.3). 

spatial 
In this section we have examined two spatial temperature distributions with very large scale 
coherence. In both cases the anisotropy patterns that they induce are increasingly small 

angular scales as one mcreases the radius of the surface-of-last-scattering past the curvature radius, 
i.e. as one decreases Rs well below unity. This illustrates that there is no simple correspondence 
between large spatial coherence and large angular coherence in an open universe. It is not clear 
whether there are any temperature configurations in which most observers would see only dipole 
(and/or quadrupole) temperature anisotropy patterns if 0s is very small. This is in contrast to 
Euclidean space where it is quite easy to push most of the anisotrppies to the lowest multipoles by 
putting most of the inhomogeneity on super-horizon scales. In the case of radial gradients it was 
shown that only a finite fraction of the anisotropy is pushed to large multipole moments as 0s is 
decreased. Thus it is possible for the large angle correlations to remain large even if Rs is small. A 
question we have not fully answered is whether this is ever likely to occur in a cosmological setting. 
Clearly this will never occur in any distribution described by a power spectrum. 

While we have considered only anisotropies generated on the surface-of-last-scattering in 
this section we would expect qualitatively similar results for anisotropies generated by adiabatic 
fluctuations. One would have to go to significantly larger values of r&&, in order to obtain the same 
level of large-angle suppression for adiabatic inhomogeneities. 

6. Conclusion 

In this work we have examined certain statistical properties of functions in a hyperbolic 
space, with applications to density fluctuations and MBR anisotropies in an open universe. We 
have shown that large-scale correlations are exponentially suppressed for separations above the 
curvature scale in an open universe. This suppression is generic to the open cosmology, rather 
than being a feature of a particular model of inhomogeneities in an open cosmology. We have 
further shown how the observed presence of large angular scale anisotropy may be used to give 
a lower bound on the cosmological density parameter Re which is independent of the shape of 
the spectrum of perturbations. We have done this by considering two generic mechanisms for the 
generation of MBR anisotropy, i.e. adiabatic or last-scattering-surface fluctuations, although we 
expect that similar sorts of limits may be obtained for any combination primordial adiabatic and 
isocurvature fluctuations. 

COBE 
The best limits on as come from the largest angular scale anisotropies, such as measured by 
[S]. We have not made a detailed comparison of the suppression of large-scale anisotropies 

due to curvature with the COBE data. Effects such as instrumental noise and cosmic variance have 
not been considered and we have not tried to find the most stringent limit on Ra by searching for an 
optimal statistic. Furthermore any formal limit would require assumptions about the “statistics” 
of the anisotropies. The comparison with COBE in figure 4 does indicate that even with extremely 
optimistic assumptions only a relatively weak lower limit, Rc 2 0.05 can be obtained. Consider- 
ing adiabatic fluctuations while including instrumental noise and a reasonable model for cosmic 
variance would yield a significantly less stringent limit. It seems likely that the lower limit on G 
from statistics of anisotropies will never yield a more stringent limit than is obtained from other 
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methods. Limits from statistics are, however, a qualitatively different types of model-independent 
limit than others that have been used. 

We have illustrated the suppression of large-scale correlations with two classes of functions, 
namely square-integrable functions, and homogeneous and isotropic ensembles of functions de- 
scribed by a power spectrum in the usual way. The former provides an instructive example while 
the latter might describe the inhomogeneities in our own universe. These two types of functions 
were chosen for a very practical reason, namely that for these functions we know how to compute 
averages to obtain 2-point correlation functions: a volume average for the former and an ensemble 
average for the latter. It has suggested by K. Gorski [7] that there may be distributions of cosmo- 
logical inhomogeneities which cannot be described by a power spectrum in the usual way, and that 
such a distribution may not exhibit the suppression of large-scale correlations found here. This 
has yet to be shown. 

In 95 we have considered spatial distributions which are not square-integrable and unlike 
anything one is likely to find from a homogeneous distribution of functions. These functions can 
be said to have very large spatial coherence, although this is difficult to quantify since the 2-point 
correlation function as normally defined would not be finite. Nevertheless, in spite of this large 
coherence we find that if these functions represented temperatures that the typical anisotropies, 
i.e. for most observers, would have significant power on very small angular scales if Rs << 1. 
It is the geometry of the hyperbolic space that causes large spatial correlations lengths to result 
in small angular correlation lengths for these configurations. For the configurations examined in 
56 we find that the suppression of large-angle anisotropies when Rc is small can be much less 
than the suppression which is required for spatial distributions of temperatures describes by a 
power spectrum. It is therefore possible to find spatial distributions where the volume-averaged 
anisotropy has large angular coherence when Rs is. small. Whether such distributions are ever 
likely to arise in any model of statistically homogeneous random noise is an unanswered question. 
In any model described by a power spectrum such configurations would essentially never occur. 
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Appendix: Tools for an open universe 

Coordinates in an open universe 

The line element for a homogeneous, isotropic FRW spacetime with spatial geometry of Hz, 
a 3-hyperboloid, is 

da2 = a’(q) (-d$ + dx2 + sinh’ x (do2 + sin’ 9 d@)) , (AlI 

where a is the expansion scale factor, 7 E (0, co) is the conformal time, and the spatial coordinates 
x, which gives the comoving radius from the central point, 0 which is the polar angle from an 
a& and 4 which is an azimuthal angle about this axis, have ranges [0, co), [0, K], and [O,%], 
respectively. Of course the choice of the central point and the polar axis is arbitrary. Units of 
length are carried by the expansion scale factor. The spatial, (x, B,(b), part of this metric we refer 
to as rij and its determinant as 7. The curvature of the spatial sections is -l/a2 in physical units, 
which decrease with time. This means that in units of comoving curvature radius, cuIy/a is unity. 
The volume element of a spatial section is given by 

dV = as sinh’ x sin OdXdBdd, (A21 

so that the volume within a distance x grows like - e2x for x larger than the curvature scale, x >> I. 
The comoving geodesic distance, d(xl,xz,$) between two points, (xl, &, &) and (x2, &,&) is 
given by 

cash d = cash XI cash ~2 - sinh ~1 sinh ~2 cos + 

co5 * = cos 81 cos 82 + sin 01 sin b$ cos(& - &) ’ (A3) 

Here ti is the angle between the direction to the two points as seen from the origin, Equation (A3) 
is simply the law of cosines for a hyperbolic geometry. One curious property is that if the &stance 

from the origin is much greater than the curvature scale, then 

coshd = exp(x1 + xz + h+in’($/2)]) Xl, x2 B 1. (A4) 

Hence, if the surface of last-scattering of MBR photons is much further from us than the curvature 
radius then most pairs of points on this surface are approximately at the same distance from each 
other with only a weak, logarithmic, dependence on the angle between them. 

Isometrics 

Here we may list the isometrics of the 3-hyperboloid. The group of isometrics of Ha is 
0(1,3), which has 6 generators. The isometrics of the 3-hyperboloid may be specified by the 6 
linearly independent Killing vector fields on the manifold, i.e. vector fields satisfying Killing’s 
equation 

q$ + q) = 0 a=1,...,6. (A5) 

The Killing vectors generate diffeomorphisms of Ha -+ Ha of the form 

zi + X(,)((2), A) 
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where X[,,(x, X) is a solution of the 1st order ordinary differential equation 

&q., = <;a, C-47) 

with initial conditions 
X,‘,,({zj), 0) = 2. (A81 

Linear combinations of the diffeomorphisms may be constructed to form a (sub-)group of isometrics 
of the space. Additional discrete symmetries may lead to parts of the group which are disconnected 
from the identity. 

The Killing vectors generating the 3 rotations, analogs to the rotations about the “z”, “y”, 
and “2 axes in a Euclidean space, are respectively 

cos 8 
t&j =(O, sin 94 sin 03s 4) 

t&, =(O, cos 4, -7 case sm 0 ‘In ‘) 

t[s, =(O, 021). 

(A91 

These Killing vectors form the sub-group O(3) with topology S2. The 3 “translations” 

cash x cash x sin 4 
.& =(COS 4 sin 8, sinh cos c+ ~0~ e, -- --I sinh x sin 8 

coshx 
&,, =(sin 4 sin 8, sinh sm 4 cos 8, 

cash x cos C$ --) 
sinhx sine 

(AlO) 

are analogs to the translations of the origin along the “z”, “y’!;‘and “2 axes in a Euclidean space. 

Expansion Law 

The matter in our universe appears to be dominated by cold, pressureless dust. In the 
absence of a cosmological constant, the cosmological density parameter is given by 

R = ~TGP 1 1-R 
-=- 1+a 

a=----- 
n (All) 

where H is the Hubble constant and the normalization of the scale factor, a, is chosen so that 
a = 1 when R = i. The evoIution of the scale factor follows as 

a(n) = sinh’ z. (AW 

The horizon and the density parameter are related by 

?7 = In 
2-cl+J(2-R)2--2 

cl 
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In physical units the curvature radius is given by 

& 
c 3000h-‘Mpc 

ury = Hm = Jrii 
H = 1OOh km/s/Mpc. (AI4) 

Even if R is very small we see that the curvature scale remains very large. Galties one curvature 
radius away have a redshift greater than z 2 e - 1 N 1.7 and the lower limit is only approached 
for very small 5-l. Thus, the surface of last scattering, at a redshift z - 1000, is more than one 
curvature radius away for 0, ,$- 0.8. Interestingly, in the limit R --t 0, an object located at redshift 
z can be at most lnr curvature radii away. 

Growth of Perturbations 

If the m&ter present in the universe is slightly inhomogeneously distributed but has negli- 
gible vorticity, and the cosmos has negligible gravity wave content then the metric of (Al) may be 
modified to be of the form 

ds’ = as (-(1 f 2+)d$ + dX2 + (1 - 2Q) sinhs x (d8s + sin* 0 d&)) @<l (AI5) 

where a(~, B, 4,~) is the Newtonian gravitational potential induced by the inhomogeneities. Again 
assuming the matter pressure is negligible one finds that the evolution of this potential is given by 

@(Xl 0, Arl) = wx, ~,?+I F(v) F(7) = 5 
sinh’q-3r7sinhr7+4coshr7-4 

(cash 7 - 1)s (A161 

where the growing mode solution which is regular at 1 = 0 has been chosen. We may see that this 
function F(q), the growth factor, is exponentially suppressed as v >> 1. 

Scalar Spherical Harmonics on H3 

We shall be interested in the harmonics which form a complete basis for square integrable 
functions on Ha [3,8]. These harmonics, written as Yvrm(x,6’,d), have the following properties. 
The harmonics satisfy the (Helmholtz) wave equation 

[Y’jViVj + (U” + l)] Yvlm(X, 8,d) = 0 v 2 0. 

The harmonics are orthogonal: 

/ 
~d’zY,,,(x,e,~)Y,:,,,,(x,e, 4) = S(Y - Y’)6W6,,f. 

This expression also fixes the normalization of the harmonics. These harmonics may be expressed 
in more familiar terms as the Helmholtz solid harmonics on the hyperboloid 

Yvlm(X, B,d) = @(x) Km(R 4) (A191 

where yr,,,(S,~$) is the usual spherical harmonic on S’, and II!, is the (Mehler -) Fock harmonic. 

H:(x) =I P[iv + I+ I]/F[iv] ] sinh-‘i2.xP;,ll:;i”(coshx) (A2’Y 
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Here P;‘(z) is the Legendre function [9] of the first kind, defined for .s 2 1, 

pL’(z) = l-(1 + 1) 1 + z l +=3”’ l-2 
sFr[-n,n+l;l+I;- 

2 I (A211 

Useful relations of these functions, as well as a short history, may be found in [9,10]. To generate 
values of the associated Legendre functions, we may use the integral definition, valid for the values 
of p and v relevant for our work, 

P:(coshx) = g;rI :I ix& ,co~~~c,+,~lfp++ 
Thus we find P,Tyz,2 (coshx) = ,/ii& v. The recursion relation 

P:+i(z) - P;-r(z) = (2v + l)@=iP:-‘(z) (~23) 

may then be used to more easily generate the functions. (Note that the definition of the associated 
Legendre functions P,‘(z) and P:(z) in Gradshteyn & Ryzhik (1980) is reversed.) 

Another notation has been used in the literature to represent the Fock harmonics (Tom.& 
1982): 

Er(v,x) = fiz sinh’x(dco~hX)r’lcos(vx) (-424) 

with normalization such that 

J 
aJ dx sinh’ x Zr(v, x) H:I(v’, x) = S(Y - v’). 

0 
(A251 

Here, No = n&,(v”+j’). For integer values of 1, i.e. those functions needed here, the harmonics 

Hl(v,x) are equivalent to H:(x). H owever; we shall use the Fock harmonics expressed with the 
associated Legendre functions in this paper. 

Mehler-Fock Transform 

Any scalar function, a(Z), on H3 may be decomposed in terms of Fock harmonics so long 
as it is a square integrable function, i.e. the integral 

converges. For the metric given by equation (Al), this condition amounts to requiring that 
1+(x, 0, d)e-x] be finite as x --t co. If satisfied, we may express the function a(Z) as 

@(Z) = dvg 2 &m(~)Y,,m(~). 
I ISO n&=-l 

Denoting the mode coefficients by a tilde we find 

&,,(Y) = 
/ 

,,+d”x @(S)YY;,(Z). (A29 

This is the Mehler-Fock transform, which takes the place of the Fourier transform on H3. 
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Power Spectrum and Correlation Functions for Square Integrable Functions 

We shsll define the correlation function of a square integrable, spherically symmetric function 
to be the volume weighted integral of the product of the functions evaluated at points separated 
by a distance d. In particular for the function W(Z), we define the the correlation function to be 

Z~(d)=J\/SdJxj~d3x’W(~)W(~)6(d-I~--l) 
S t/V1 J(d - ISI) 

J =4x 
0 
mduvF’~(u)~ 

(A291 

Here we define the power spectrum as 

P,(Y) = Y-2 (A30) 

For a spherically symmetric function the sum is merely a formality, as the only non-zero contribu- 
tion to the Fock transform, Wrm(v), is the (I,m) = (0,O) mode coefficient. 

Power Spectra 

The inhomogeneities in our universe, such as the gravitational potential, Q, may be de- 
scribed in terms of scalar functions. Now, the Cosmological Principle states that we expect the 
universe to be on average homogeneous and isotropic. Thus, we expect @ to be determined by 
some homogeneous isotropic distribution. By these considerations one may determine that the 
expectation under this distribution of the second moment of the mode coefficients is of the form 

(6,&5~,,(v’)) = (Zn)SP*(v)6(v - Y’)6W6*,,. C-431) 

Here the function P*(v) is the power spectrum which is given by 

P*(v) = (2x)-3 2 5 &&q 
I=0 In=-, 

(A32) 

if the distribution is ergodic. This power spectrum, P*(u), differs from the power spectrum for 
square-integrable function, P*(u); defined in eq (A31). S’ mce a statistically homogeneous function 
must maintain the same level of inhomogeneity in all regions of the space it will not be square- 
integrable. The functions 51,,,(v) will not be finite but must be considered as distributions. The 
spectrum P*(v), however, will remain finite or at least integrable, while for a statistically homo- 
geneous function, Q, ‘F* would diverge. Of course, P+, is non-negative but is otherwise arbitrary 
In terms of the power spectrum the 2-point correlation function of @ may beg written as 

t,(d) = (qx, 64) a*txf, et, 4)) = 4?r i-= dvvPa(v)$$ (A33) 

where d is the geodesic distance between the two points (x, 8,d) and (x’, 8’, #) given in equation 

(A3). 
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Let us pause to examine equation (A33), which will give us some insight into the general 
claim made in this paper, that large scale structure is suppressed in an open universe. Observe 
.the dependence on the separation distance d by the correlation function i&(d). The integrand is 
suppressed exponentially for d >> 1, that is, for separations larger than the curvature radius. We 
may recall that on a spatially flat space, the integrand of the correlation function diminishes only 
as the inverse of the separation distance. Thus the 2-point correlation function is exponentially 
suppressed at large separations in an open universe, and in some way is more strongly suppressed 
than in a spatially flat universe. 

Convolution Theorem 

If we draw functions from an isotropic, homogeneous random distribution and convolve each 
of these functions with a spherically symmetric window function, we obtain a new distribution of 
functions which is also homogeneous and isotropic. Given a function W, the convolution with @ is 

lW* ~l(x,~,~) = / J;;Td3~‘WdP(x’,~‘,#4 (A34) 

where again d is the geodesic distance between the (x, 8,d) and (x’, 8’, 4’). In terms of the transform 
of W, the power spectra of the convolved function is 

Pl.v.B(~) = (2~)%v(4P*(4 (A35) 

where PW is the power spectrum of the convolving function. If the volume integral of the convolving 
function is normalized to unity, then the convolution is simply a weighted average. For such an 
average the variance may only diminish, i.e. 

I J;ld”z W(d) = 1 implies (27r)3Pw(“) 5 1 v Y. (A36) 
J 

In flat space, equation (A36) would also imply (2n-)“&(O) = 1 so that Pw..+(O) = P+(O), which 
is just another way of saying that the mean is not effected by a convolution. However on this 
hyperbolic space one finds (2~)~7’,(0) # 1 so that Pw.+(O) # P*(O). This is represented in the 
fact that the lowest, v = 0, Fock harmonic does not generally represent the mean value of the 
spherically-symmetric function, except in the limit &,,, -+ 00. This is another reflection of the 
lack of large scale power in an open universe which is demonstrated in this paper.~ 
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